Engineering of pyranose dehydrogenase for application to enzymatic anodes in biofuel cells.
نویسندگان
چکیده
In the search for improved glucose oxidising enzymes for biofuel cells, a number of Agaricus meleagris (Am) pyranose dehydrogenase mutants (mPDHs) exhibiting different degrees of glycosylation were produced using site-directed mutagenesis and electrochemically characterised. The response of electrodes modified with different mPDHs is compared in a mediated electron transfer mode, where the electrodes are modified with each of the mutants covalently attached to redox polymers based on polyvinylimidazole-bound osmium complexes using a cross-linking agent. Coating of each of the enzymes onto the graphite electrode surface is also used to screen for their capacity for direct electron transfer. The double mutant PDH exhibits the highest response to glucose at physiological pH in both direct and mediated electron transfer modes, producing a Jmax of ≈800 μA cm(-2) at room temperature and when "wired" to the Os-polymer having the highest formal potential. From the results obtained the double mPDH is proposed as the most suitable candidate for application to bioanode fabrication.
منابع مشابه
Glucose-based Biofuel Cells: Nanotechnology as a Vital Science in Biofuel Cells Performance
Nanotechnology has opened up new opportunities for the design of nanoscale electronic devices suitable for developing high-performance biofuel cells. Glucose-based biofuel cells as green energy sources can be a powerful tool in the service of small-scale power source technology as it provides a latent potential to supply power for various implantable medical electronic devices. By using physiol...
متن کاملDesign and Fabrication of Glucose/O2 Enzymatic Biofuel Cell
Enzyme-based biofuel cells (EBFCs) are systems that use a variety of organic compounds to produce electricity through oxido-reductase enzymes, such as oxidase or dehydrogenase as biocatalysts immobilized on electrodes. In this study, a single-chamber EBFC consisting of carbon electrodes that operating at ambient temperature in phosphate buffer, pH 7 is reported. The EBFC anode was based on gluc...
متن کاملEffect of support on power output of ethanol/O2 biofuel cell
Enzymatic biofuel cells have many great usages as a small power source for medical and environmental applications. In this paper, we employed carboxylated multiwall carbon nanotube- (1-ethyl-3-methylimidazolium bis (trifluoromethyl sulfonyl) imide) ionic liquid nanocomposite on two different electrodes (glassy carbon and carbon felt) for immobilizing alcohol dehydrogenase. The properties of the...
متن کاملEffect of membrane on power density of ethanol/O2 biofuel cell
A biofuel cell is a device for converting chemical energy to electrical energy by a simple way. A high-impact anode is prepared in this research. Here, carboxylated multiwall carbon nanotube (COOH-MWCNT), polydiallyldimethyl ammonium chloride (PDDA) and alcohol dehydrogenase were cast on modified glassy carbon with polymethylene green to construct the bioanode for ...
متن کامل3D Graphene Biocatalysts for Development of Enzymatic Biofuel Cells: A Short Review
At this short review, different chemical production of 3D graphene biocatalysts and developing of its characters by new substituted for using in enzymatic fuel cells are investigated. Also, the current ways of production of 3D Graphene Biocatalysts, different types of substitutes, the best methods for having the highest efficiency, the physical, chemical and biological characters of new biocata...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 14 شماره
صفحات -
تاریخ انتشار 2015